3.10.12 \(\int \frac {(2+e x)^{5/2}}{\sqrt {12-3 e^2 x^2}} \, dx\) [912]

Optimal. Leaf size=65 \[ -\frac {32 \sqrt {2-e x}}{\sqrt {3} e}+\frac {16 (2-e x)^{3/2}}{3 \sqrt {3} e}-\frac {2 (2-e x)^{5/2}}{5 \sqrt {3} e} \]

[Out]

16/9*(-e*x+2)^(3/2)/e*3^(1/2)-2/15*(-e*x+2)^(5/2)*3^(1/2)/e-32/3*3^(1/2)*(-e*x+2)^(1/2)/e

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {641, 45} \begin {gather*} -\frac {2 (2-e x)^{5/2}}{5 \sqrt {3} e}+\frac {16 (2-e x)^{3/2}}{3 \sqrt {3} e}-\frac {32 \sqrt {2-e x}}{\sqrt {3} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + e*x)^(5/2)/Sqrt[12 - 3*e^2*x^2],x]

[Out]

(-32*Sqrt[2 - e*x])/(Sqrt[3]*e) + (16*(2 - e*x)^(3/2))/(3*Sqrt[3]*e) - (2*(2 - e*x)^(5/2))/(5*Sqrt[3]*e)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 641

Int[((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (c/e)*x)^
p, x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && I
ntegerQ[m + p]))

Rubi steps

\begin {align*} \int \frac {(2+e x)^{5/2}}{\sqrt {12-3 e^2 x^2}} \, dx &=\int \frac {(2+e x)^2}{\sqrt {6-3 e x}} \, dx\\ &=\int \left (\frac {16}{\sqrt {6-3 e x}}-\frac {8}{3} \sqrt {6-3 e x}+\frac {1}{9} (6-3 e x)^{3/2}\right ) \, dx\\ &=-\frac {32 \sqrt {2-e x}}{\sqrt {3} e}+\frac {16 (2-e x)^{3/2}}{3 \sqrt {3} e}-\frac {2 (2-e x)^{5/2}}{5 \sqrt {3} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 45, normalized size = 0.69 \begin {gather*} -\frac {2 \sqrt {4-e^2 x^2} \left (172+28 e x+3 e^2 x^2\right )}{15 e \sqrt {6+3 e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + e*x)^(5/2)/Sqrt[12 - 3*e^2*x^2],x]

[Out]

(-2*Sqrt[4 - e^2*x^2]*(172 + 28*e*x + 3*e^2*x^2))/(15*e*Sqrt[6 + 3*e*x])

________________________________________________________________________________________

Maple [A]
time = 0.47, size = 39, normalized size = 0.60

method result size
default \(-\frac {2 \sqrt {-3 e^{2} x^{2}+12}\, \left (3 e^{2} x^{2}+28 e x +172\right )}{45 \sqrt {e x +2}\, e}\) \(39\)
gosper \(\frac {2 \left (e x -2\right ) \left (3 e^{2} x^{2}+28 e x +172\right ) \sqrt {e x +2}}{15 e \sqrt {-3 e^{2} x^{2}+12}}\) \(44\)
risch \(\frac {2 \sqrt {\frac {-3 e^{2} x^{2}+12}{e x +2}}\, \sqrt {e x +2}\, \left (3 e^{2} x^{2}+28 e x +172\right ) \left (e x -2\right )}{15 \sqrt {-3 e^{2} x^{2}+12}\, e \sqrt {-3 e x +6}}\) \(72\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/45/(e*x+2)^(1/2)*(-3*e^2*x^2+12)^(1/2)*(3*e^2*x^2+28*e*x+172)/e

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.51, size = 46, normalized size = 0.71 \begin {gather*} \frac {2 \, {\left (-3 i \, \sqrt {3} x^{3} e^{3} - 22 i \, \sqrt {3} x^{2} e^{2} - 116 i \, \sqrt {3} x e + 344 i \, \sqrt {3}\right )} e^{\left (-1\right )}}{45 \, \sqrt {x e - 2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="maxima")

[Out]

2/45*(-3*I*sqrt(3)*x^3*e^3 - 22*I*sqrt(3)*x^2*e^2 - 116*I*sqrt(3)*x*e + 344*I*sqrt(3))*e^(-1)/sqrt(x*e - 2)

________________________________________________________________________________________

Fricas [A]
time = 2.15, size = 46, normalized size = 0.71 \begin {gather*} -\frac {2 \, {\left (3 \, x^{2} e^{2} + 28 \, x e + 172\right )} \sqrt {-3 \, x^{2} e^{2} + 12} \sqrt {x e + 2}}{45 \, {\left (x e^{2} + 2 \, e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="fricas")

[Out]

-2/45*(3*x^2*e^2 + 28*x*e + 172)*sqrt(-3*x^2*e^2 + 12)*sqrt(x*e + 2)/(x*e^2 + 2*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\sqrt {3} \left (\int \frac {4 \sqrt {e x + 2}}{\sqrt {- e^{2} x^{2} + 4}}\, dx + \int \frac {4 e x \sqrt {e x + 2}}{\sqrt {- e^{2} x^{2} + 4}}\, dx + \int \frac {e^{2} x^{2} \sqrt {e x + 2}}{\sqrt {- e^{2} x^{2} + 4}}\, dx\right )}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+2)**(5/2)/(-3*e**2*x**2+12)**(1/2),x)

[Out]

sqrt(3)*(Integral(4*sqrt(e*x + 2)/sqrt(-e**2*x**2 + 4), x) + Integral(4*e*x*sqrt(e*x + 2)/sqrt(-e**2*x**2 + 4)
, x) + Integral(e**2*x**2*sqrt(e*x + 2)/sqrt(-e**2*x**2 + 4), x))/3

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error index.cc index_gcd Error: Bad Argument ValueError index.cc index_gcd Error: Bad Argument Value

________________________________________________________________________________________

Mupad [B]
time = 0.55, size = 61, normalized size = 0.94 \begin {gather*} -\frac {\sqrt {12-3\,e^2\,x^2}\,\left (\frac {344\,\sqrt {e\,x+2}}{45\,e^2}+\frac {2\,x^2\,\sqrt {e\,x+2}}{15}+\frac {56\,x\,\sqrt {e\,x+2}}{45\,e}\right )}{x+\frac {2}{e}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x + 2)^(5/2)/(12 - 3*e^2*x^2)^(1/2),x)

[Out]

-((12 - 3*e^2*x^2)^(1/2)*((344*(e*x + 2)^(1/2))/(45*e^2) + (2*x^2*(e*x + 2)^(1/2))/15 + (56*x*(e*x + 2)^(1/2))
/(45*e)))/(x + 2/e)

________________________________________________________________________________________